EFV (efavirenz) and β-thujaplicinol [2,7-dihydroxy-4-1(methylethyl)-2,4,6-cycloheptatrien-1-one] have contrasting effects on the RNase H activity of HIV-1 RT (reverse transcriptase). EFV binds in the non-nucleoside inhibitor-binding pocket and accelerates this activity, whereas β-thujaplicinol binds in the RNase H active site and inhibits it. We have used pre-steady-state kinetic analyses to gain an insight into the mechanism by which EFV and a β-thujaplicinol analogue [19616 (2,7-dihydroxy-2,4,6-cyclo-heptatrien-1-one)] modulate RT RNase H activity. Our data show that EFV and 19616 have no effect on polymerase-dependent RNase H cleavages. However, both compounds significantly affected the rates of polymerase-independent RNase H cleavages. In regard to the latter, we found no evidence that the bound RNA/DNA template/primer substrate restricted 19616 from interacting with RT. In light of these data, we propose a model in which 19616 binds to the RNase H active site of RT after the primary polymerase-dependent RNase H cleavage has occurred and stabilizes the 3'-end of the DNA primer in the polymerase active site thus blocking the enzyme's ability to carry out the polymerase-independent cleavages. By contrast, EFV destabilizes the 3'-end of the DNA primer in the DNA polymerase active site and promotes RT-mediated polymerase-independent cleavages. Consistent with this model, we show antagonism between EFV and 19616.