Evaluation of pluronic nanosuspensions loading a novel insoluble anticancer drug both in vitro and in vivo

Int J Pharm. 2013 Nov 1;456(1):243-50. doi: 10.1016/j.ijpharm.2013.07.058. Epub 2013 Aug 5.

Abstract

To improve the solubility, stability and the antitumor activity of a novel anticancer drug, 3-(4-bromopheny l)-2-(ethyl-sulfonyl)-6-methylquinoxaline1,4-dioxide (Q39), a poloxamer nanosuspension was developed by precipitation combined with high pressure homogenization in present study. In vitro characterizations of Q39 nanosuspension (Q39/NS), including particle size, polydispersity index (PI), morphology, crystalline, saturation solubility, stability and releases were evaluated. BABL/c nude mice bearing HepG2 cells were used as in vivo tumor models to evaluate the anti-tumor activity of Q39/NS after intravenous administration. The particle size and PI for Poloxamer188 nanosuspension (P188/NS) were (304±3) nm, and (0.123±0.005) respectively, and it was (307±5) nm and (0.120±0.007) for Poloxamer85 nanosuspension (P85/NS) correspondingly. The morphology of P188/NS was spherical shape while elliptoid shape for P85/NS. The crystalline of Q39/NS did not change as shown by the X-ray diffraction analysis. The stability of Q39/NS improved compared with the solution. The solubility of Q39 in P188/NS was 7.3 times higher than the original solubility, while it was 6 times for P85/NS. Sustained release as shown from the in vitro release test, together with the tumor-targeting as shown from in vivo NS distribution, may contribute to the enhanced in vivo antitumor activity of Q39/NS.

Keywords: Antitumor; Nanosuspension; Poloxamer; Q39.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Animals
  • Antineoplastic Agents / administration & dosage
  • Antineoplastic Agents / chemistry*
  • Drug Compounding
  • Drug Stability
  • Hep G2 Cells
  • Humans
  • Male
  • Mice
  • Mice, Nude
  • Nanoparticles / administration & dosage
  • Nanoparticles / chemistry*
  • Neoplasms / drug therapy
  • Neoplasms / pathology
  • Poloxamer / chemistry*
  • Pressure
  • Quinoxalines / administration & dosage
  • Quinoxalines / chemistry*
  • Solubility
  • Surface-Active Agents / chemistry*
  • Suspensions
  • Tumor Burden / drug effects
  • Xenograft Model Antitumor Assays

Substances

  • 3-(4-bromophenyl)-2-(ethylsulfonyl)-6-methylquinoxaline-1,4-dioxide
  • Antineoplastic Agents
  • Quinoxalines
  • Surface-Active Agents
  • Suspensions
  • Poloxamer