Human P-glycoprotein differentially affects antidepressant drug transport: relevance to blood-brain barrier permeability

Int J Neuropsychopharmacol. 2013 Nov;16(10):2259-72. doi: 10.1017/S1461145713000692. Epub 2013 Aug 9.

Abstract

The pharmacological concept that inhibition of the drug efflux pump P-glycoprotein (P-gp) enhances brain distribution of the antidepressant imipramine in the rat has recently been demonstrated. To determine if these findings are relevant to humans, the present study investigated if imipramine is a transported substrate of human P-gp. Furthermore, additional experiments were carried out to determine if findings in relation to imipramine and human P-gp would apply to other antidepressants from a range of different classes. To this end, bidirectional transport experiments were carried out in the ABCB1-transfected MDCKII-MDR1 cell line. Transported substrates of human P-gp are subjected to net efflux in this system, exhibiting a transport ratio (TR) ≥ 1.5, and directional efflux is attenuated by co-incubation of a P-gp inhibitor. Imipramine was identified as a transported substrate of human P-gp (TR = 1.68, attenuated by P-gp inhibition). However, the antidepressants amitriptyline, duloxetine, fluoxetine and mirtazapine were not transported substrates of human P-gp (TR ≤ 1.16 in all cases). These results offer insight into the role of P-gp in the distribution of antidepressants, revealing that rodent findings pertaining to imipramine may translate to humans. Moreover, the present results highlight that other antidepressants may not be transported substrates of human P-gp.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • ATP Binding Cassette Transporter, Subfamily B
  • ATP Binding Cassette Transporter, Subfamily B, Member 1 / antagonists & inhibitors
  • ATP Binding Cassette Transporter, Subfamily B, Member 1 / genetics
  • ATP Binding Cassette Transporter, Subfamily B, Member 1 / metabolism*
  • Amitriptyline / metabolism
  • Animals
  • Antidepressive Agents / metabolism*
  • Biological Transport
  • Blood-Brain Barrier / metabolism*
  • Capillary Permeability*
  • Dogs
  • Duloxetine Hydrochloride
  • Fluoxetine / metabolism
  • Humans
  • Imipramine / metabolism*
  • Madin Darby Canine Kidney Cells
  • Mianserin / analogs & derivatives
  • Mianserin / metabolism
  • Mirtazapine
  • Thiophenes / metabolism
  • Transfection

Substances

  • ABCB1 protein, human
  • ATP Binding Cassette Transporter, Subfamily B
  • ATP Binding Cassette Transporter, Subfamily B, Member 1
  • Antidepressive Agents
  • Thiophenes
  • Fluoxetine
  • Amitriptyline
  • Mianserin
  • Duloxetine Hydrochloride
  • Mirtazapine
  • Imipramine