We demonstrate feedback-optimized focusing of spatially coherent polychromatic light after transmission through strongly scattering media, and describe the relationship between optimized focus intensity and initial far-field speckle contrast. Optimization is performed using a MEMS spatial light modulator with camera-based or spectrometer-based feedback. We observe that the spectral bandwidth of the optimized focus depends on characteristics of the feedback signal. We interpret this dependence as a modification in the number of independent frequency components, or spectral correlations, transmitted by the sample, and introduce a simple model for polychromatic focus enhancement that is corroborated by experiment with calibrated samples.