The aim of the present study was to explore protein expression profiles during cancer cell apoptosis induced by hyperthermia. A hyperthermia-induced apoptosis model was established using a Tca8113 cell line derived from a human tongue squamous cell carcinoma, which underwent fluorescent differential display two-dimensional (2D) gel electrophoresis at 2, 6, 8, 12 and 24 h following the induction of hyperthermia. Proteins were identified by mass spectrometry analysis. Expression changes in the proteins were detected by western blot analysis. A total of 107 proteins were detected that exhibited different expression levels in the hyperthermia-treated cells compared with the controls, and 57 of these proteins were identified. Expression changes in the representative proteins were further verified by western blot analysis. These 57 proteins were identified according to the following functional groups: energy metabolism-related enzymes, cytoskeleton-related proteins, chaperones, transcription factors, protein synthesis-related proteins and cell division- and proliferation-related proteins. These groups included 44 upregulated and 13 downregulated proteins. Among the 44 upregulated proteins, 27 were upregulated continuously, eight were upregulated at an early time-point and nine were upregulated at a middle to late time-point. Among the 13 downregulated proteins, five were downregulated continuously, six were downregulated at an early time-point and two were downregulated at a middle to late time-point. These results indicate that hyperthermia-induced Tca8113 cell apoptosis is controlled by multiple factors, which include time and regulatory proteins.
Keywords: apoptosis; cancer; hyperthermia; mass spectrometry analysis; proteomic.