This study aimed to evaluate correlations between fermentation characteristics and end products of selected fermentable fibres (three types of fructans, citrus pectin, guar gum), incubated with faecal inocula from donor cats fed two diets, differing in fibre and protein sources and concentrations. Cumulative gas production was measured over 72 h, fermentation end products were analysed at 4, 8, 12, 24, 48 and 72 h post-incubation, and quantification of lactobacilli, bifidobacteria and bacteroides in fermentation liquids were performed at 4 and 48 h of incubation. Partial Pearson correlations, corrected for inoculum, were calculated to assess the interdependency of the fermentation characteristics of the soluble fibre substrates. Butyric and valeric acid concentrations increased with higher fermentation rates, whereas acetic acid declined. Concentrations of butyric acid (highest in fructans) and propionic acid were inversely correlated with protein fermentation end products at several time points, whereas concentrations of acetic acid (highest in citrus pectin) were positively correlated with these products at most time points. Remarkably, a lack of clear relationship between the counts of bacterial groups and their typically associated products after 4 h of incubation was observed. Data from this experiment suggest that differences in fibre fermentation rate in feline faecal inocula coincide with typical changes in the profile of bacterial fermentation products. The observed higher concentrations of propionic and butyric acid as a result of fibre fermentation could possibly have beneficial effects on intestinal health, and may be confounded with a concurrent decrease in the production of putrefactive compounds. In conclusion, supplementing guar gum or fructans to a feline diet might be more advantageous compared with citrus pectin. However, in vivo research is warranted to confirm these conclusions in domestic cats.