We compared muscle activity of the quadriceps, hamstring, and gastrocnemius muscles when ACL-intact (ACL(INT)) and ACL-reconstructed (ACL(REC)) male and female subjects performed a jump-cut task. Surface electromyography sensors were used to evaluate time to peak muscle activity and muscle activity ratios. Rectus femoris (RF) and vastus medialis (VM) peak timing was 71 and 78 ms earlier in ACL(INT) than in ACL(REC) subjects, respectively. Biceps femoris (BF) peak timing was 90 ms earlier in ACL(INT) than in ACL(REC) subjects and 75 ms earlier in females than in males. Medial gastrocnemius (MG) muscle peak timing was 77 ms earlier in ACL(INT) than in ACL(REC) subjects. Lateral gastrocnemius (LG) and MG muscle peak times were 106 ms and 87 ms earlier in females than in males, respectively. The RF, VM, BF, and MG peaked later in ACL(REC) than in ACL(INT) subjects. There was evidence suggesting that the loading phase quadriceps:hamstring (quad:ham) muscle activity ratio was greater in ACL(REC) than in ACL(INT) subjects. Finally, the injury risk phase quad:ham muscle activity ratio was 4.8 times greater in females than in males. In conclusion, differences exist in muscle activity related to ACL status and sex that could potentially help explain graft failure risk and the sex bias.
Keywords: ACL; EMG; injury; muscle; reconstruction.
© 2013 Orthopaedic Research Society. Published by Wiley Periodicals, Inc.