Resistin is an adipocytokine leading to insulin resistance. Endotoxin/lipopolysaccharide (LPS) has been reported to decrease the expression of resistin mRNA and protein in both lean and db/db obese mice, although the underlying mechanism remains unclear. Several models such as ex vivo culture of adipose tissues, primary rat adipocytes and 3T3-L1 adipocytes were used to further characterize the effect of LPS on the expression of resistin. LPS attenuated both the resistin mRNA and protein in a time- and dose-dependent manner. In the presence of actinomycin D, LPS failed to reduce the half-life of resistin mRNA, suggesting a transcriptional mechanism. The lipid A fraction is crucial for the inhibition of resistin expression induced by LPS. Pharmacological intervention of c-Jun N-terminal kinase (JNK) reversed the inhibitory effect of LPS. LPS down-regulated CCAAT/enhancer-binding protein α (C/EBP-α; CEBPA) and peroxisome proliferator-activated receptor γ (PPAR-γ; PPARG), while activation of C/EBP-α or PPAR-γ by either over-expressing these transcriptional factors or by rosiglitazone, an agonist of PPAR-γ, blocked the inhibitory effect of LPS on resistin. C/EBP homologous protein (CHOP-10; DDIT3) was up-regulated by LPS, while a CHOP-10 antisense oligonucleotide reversed the decrement of resistin protein induced by LPS. Taken together, these results suggest that LPS inhibits resistin expression through a unique signaling pathway involving toll-like receptor 4, JNK, CHOP-10 and C/EBP-α/PPAR-γ.
Keywords: C/EBP-α; CHOP-10; JNK; LPS; PPAR-γ; resistin.