Immature MEF2C-dysregulated T-cell leukemia patients have an early T-cell precursor acute lymphoblastic leukemia gene signature and typically have non-rearranged T-cell receptors

Haematologica. 2014 Jan;99(1):94-102. doi: 10.3324/haematol.2013.090233. Epub 2013 Aug 23.

Abstract

Three distinct immature T-cell acute lymphoblastic leukemia entities have been described including cases that express an early T-cell precursor immunophenotype or expression profile, immature MEF2C-dysregulated T-cell acute lymphoblastic leukemia cluster cases based on gene expression analysis (immature cluster) and cases that retain non-rearranged TRG@ loci. Early T-cell precursor acute lymphoblastic leukemia cases exclusively overlap with immature cluster samples based on the expression of early T-cell precursor acute lymphoblastic leukemia signature genes, indicating that both are featuring a single disease entity. Patients lacking TRG@ rearrangements represent only 40% of immature cluster cases, but no further evidence was found to suggest that cases with absence of bi-allelic TRG@ deletions reflect a distinct and even more immature disease entity. Immature cluster/early T-cell precursor acute lymphoblastic leukemia cases are strongly enriched for genes expressed in hematopoietic stem cells as well as genes expressed in normal early thymocyte progenitor or double negative-2A T-cell subsets. Identification of early T-cell precursor acute lymphoblastic leukemia cases solely by defined immunophenotypic criteria strongly underestimates the number of cases that have a corresponding gene signature. However, early T-cell precursor acute lymphoblastic leukemia samples correlate best with a CD1 negative, CD4 and CD8 double negative immunophenotype with expression of CD34 and/or myeloid markers CD13 or CD33. Unlike various other studies, immature cluster/early T-cell precursor acute lymphoblastic leukemia patients treated on the COALL-97 protocol did not have an overall inferior outcome, and demonstrated equal sensitivity levels to most conventional therapeutic drugs compared to other pediatric T-cell acute lymphoblastic leukemia patients.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, Non-P.H.S.

MeSH terms

  • Adolescent
  • Child
  • Child, Preschool
  • Chromosome Aberrations
  • Female
  • Gene Expression Regulation, Leukemic
  • Humans
  • Immunophenotyping
  • Infant
  • Leukemia, T-Cell / genetics*
  • Leukemia, T-Cell / metabolism*
  • Leukemia, T-Cell / mortality
  • MEF2 Transcription Factors / genetics
  • MEF2 Transcription Factors / metabolism
  • Male
  • Precursor T-Cell Lymphoblastic Leukemia-Lymphoma / genetics
  • Precursor T-Cell Lymphoblastic Leukemia-Lymphoma / metabolism
  • Receptors, Antigen, T-Cell / genetics
  • Receptors, Antigen, T-Cell / metabolism*
  • Transcriptome*

Substances

  • MEF2 Transcription Factors
  • MEF2C protein, human
  • Receptors, Antigen, T-Cell