A1 selective agonist and antagonist radioligands bind to the same A1 adenosine receptor binding subunit, as documented by photoaffinity labelling and partial peptide maps. In this study we document that although these radioligands recognize the same A1 adenosine receptor (A1AR), they recognize different numbers of A1ARs in bovine brain membranes, with agonist number being greater than antagonist number. Neither addition of guanine nucleotides nor removal of Mg2+ ions enhanced antagonist binding in membranes. On solubilization, agonists still recognized a greater number of A1ARs but addition of guanine nucleotides or removal of Mg2+ substantially increased the number of receptors detected with antagonist radioligands. The effects of Mg2+ and guanine nucleotides were not additive, suggesting that formation of a "low agonist-receptor-G protein state" by either modulating agent was sufficient to alter the receptor conformation such that it could be recognized by antagonist. These studies suggest that a proportion of the "precoupled A1AR-G protein complex" in membranes are in a conformation that cannot be recognized by antagonists and that membrane constraints are such that ions or guanine nucleotides cannot sufficiently modulate the conformation to allow it to recognize antagonists. On removal of membrane structure by solubilization, these constraints are removed.