In this study, methylcellulose (MC) was used to control the gelation time of silk fibroin (SF) aqueous solution. The gelation time was measured using a Vibro Viscometer at 50 °C. Fourier transform infrared spectroscopy (FT-IR), scanning electron microscopy (SEM), and a texture meter were used to investigate the effect of MC on the hydrogelation of SF solution. SF/MC hydrogels could be formed by the addition of MC, although their gelation time was increased with MC content. To examine the conformational change of SF/MC hydrogels, time-resolved FT-IR spectra were obtained at constant temperature using a custom-made IR chamber. From FT-IR spectra focused on the amide I peak position, the transition of SF molecules in SF/MC solution from a random coil to a β-sheet structure was inhibited in the presence of MC molecules. In addition, the drug release of SF/MC hydrogels loaded with 5-aminosalicylic acid was studied in 2-dimensional (2-D) and 3-dimensional (3-D) conditions in vitro. The drug release behavior of SF or SF/MC hydrogels was measured using UV-Vis spectroscopy. The release rate of 5-aminosalicylic acid in SF/MC hydrogel was lower than that of SF hydrogel, which may be closely associated with the hydrophilic interaction between MC and 5-aminosalicylic acid. This approach to controlling the sol-gel transition and the drug release of SF hydrogels by the addition of MC will be useful in the design and tailoring of novel materials for biomedical applications.
Keywords: Drug release; Gelation; Methylcellulose; Silk fibroin.
Copyright © 2013 Elsevier Ltd. All rights reserved.