The development of presbycusis, or age-related hearing loss, is determined by a combination of genetic and environmental factors. The auditory periphery exhibits a progressive bilateral, symmetrical reduction of auditory sensitivity to sound from high to low frequencies. The central auditory nervous system shows symptoms of decline in age-related cognitive abilities, including difficulties in speech discrimination and reduced central auditory processing, ultimately resulting in auditory perceptual abnormalities. The pathophysiological mechanisms of presbycusis include excitotoxicity, oxidative stress, inflammation, aging and oxidative stress-induced DNA damage that results in apoptosis in the auditory pathway. However, the originating signals that trigger these mechanisms remain unclear. For instance, it is still unknown whether insulin is involved in auditory aging. Auditory aging has preclinical lesions, which manifest as asymptomatic loss of periphery auditory nerves and changes in the plasticity of the central auditory nervous system. Currently, the diagnosis of preclinical, reversible lesions depends on the detection of auditory impairment by functional imaging, and the identification of physiological and molecular biological markers. However, despite recent improvements in the application of these markers, they remain under-utilized in clinical practice. The application of antisenescent approaches to the prevention of auditory aging has produced inconsistent results. Future research will focus on the identification of markers for the diagnosis of preclinical auditory aging and the development of effective interventions.
Keywords: diagnosis; intervention; preclinical auditory damage; presbycusis.
© 2013 Japan Geriatrics Society.