The current study was designed to investigate the effect of ginsenoside Rb1 (Rb1) on apoptosis induced by hypoxia and oxidative stress in a retinal ganglion cell line (RGC-5). The underlying mechanism was also investigated. RGC-5 cells were pretreated with 10 µmol/l Rb1 for 24 h and exposed to 400 µmol/l cobalt chloride (CoCl2) for 48 h or 600 µmol/l H2O2 for 24 h. The percentage of cells actively undergoing apoptosis was determined by flow cytometry with Annexin V/propidium iodide (PI) double staining. The expression of caspases was determined using western blot analysis. CoCl2 and H2O2 treatments significantly increased the apoptotic percentages to 24.5 and 21.63%, respectively. Pretreatment of Rb1 reduced the total apoptotic percentages to 15.12 and 12.03%, respectively. The expression of cleaved caspase-3, -9 and -8 was increased in the CoCl2-treated group, however, caspase-3 was not increased in the H2O2-treated group. Pretreatment of Rb1 reduced the expression of cleaved caspase-3 and -9 in the CoCl2-treated group, but reduced only cleaved caspase-9 in the H2O2-treated group. These results suggest that Rb1 may prevent RGC-5 cells from apoptosis against hypoxia and oxidative stress via the mitochondrial pathway.