We employ fluorescence correlation spectroscopy (FCS) and coarse-grained molecular dynamics simulations to study the mobility of tracers in polymer solutions. Excluded volume interactions result in crowding-induced slowdown, depending only on the polymer concentration. With specific tracer-polymer attractions, the tracer is slowed down at much lower concentrations, and a second diffusion component appears that is sensitive to the polymer chain length. The two components can be resolved by FCS, only if the distance traveled by the tracer in the polymer-bound state is greater than the FCS focal spot size. The tracer dynamics can be used as a sensitive probe of the nature and strength of interactions, which-despite their local character-emphasize the role of chain connectivity.