A dynamic interplay exists between host and tumor, and the ability of the tumor to evade immune recognition often determines the clinical course of the disease. Significant enthusiasm currently exists for a new immunotherapeutic strategy: the use of immunomodulatory monoclonal antibodies that directly enhance the function of components of the anti-tumor immune response such as T cells, or block immunologic checkpoints that would otherwise restrain effective anti-tumor immunity. This strategy is based on the evidence that development of cancer is facilitated by the dis-regulation and exploitation of otherwise physiological pathways that, under normal circumstances, down-regulate immune activation and maintain tolerance to self. Among these pathways an important role is covered by the Programmed death-1 (PD-1)/PD-Ligand (L) 1 axis. An emerging concept in cancer immunology is that inhibitory ligands such as PD-L1 are induced in response to immune attack, a mechanism termed "adaptive resistance". This potential mechanism of immune resistance by tumors suggests that therapy directed at blocking the interaction between PD-1 and PD-L1 might synergize with other treatments that enhance endogenous antitumor immunity. The anti-PD-1 strategy can be effective in several solid tumors such as renal cell carcinoma (RCC) or non-small cell lung cancer (NSCLC), however in this review we summarize the biological role of PD-1/PD-L1 on cancer by focusing our attention in the biological rationale, clinical challenges and opportunities to target the PD-1/PD-L1 axis in melanoma.
Keywords: Melanoma; PD-1; PD-L1.
Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.