Collagen-like peptides and peptide-polymer conjugates in the design of assembled materials

Eur Polym J. 2013 Oct;49(10):2998-3009. doi: 10.1016/j.eurpolymj.2013.05.013.

Abstract

Collagen is the most abundant protein in mammals, and there has been long-standing interest in understanding and controlling collagen assembly in the design of new materials. Collagen-like peptides (CLP), also known as collagen-mimetic peptides (CMP) or collagen-related peptides (CRP), have thus been widely used to elucidate collagen triple helix structure as well as to produce higher-order structures that mimic natural collagen fibers. This mini-review provides an overview of recent progress on these topics, in three broad topical areas. The first focuses on reported developments in deciphering the chemical basis for collagen triple helix stabilization, which we review not with the intent of describing the basic structure and biological function of collagen, but to summarize different pathways for designing collagen-like peptides with high thermostability. Various approaches for producing higher-order structures via CLP self-assembly, via various types of intermolecular interaction, are then discussed. Finally, recent developments in a new area, the production of polymer-CLP bioconjugates, are summarized. Biological applications of collagen contained hydrogels are also included in this section. The topics may serve as a guide for the design of collagen-like peptides and their bioconjugates for targeted application in the biomedical arena.

Keywords: Collagen like peptide; bioconjugate; hydrogel; self-assembly; triple helix.