Bioactive peptides have evolved to optimally fulfill specific biological functions, a fact which has long attracted attention for their use as therapeutic agents. While there have been some recent commercial successes fostered in part by advances in large-scale peptide synthesis, development of peptides as therapeutic agents has been significantly impeded by their inherent susceptibility to protease degradation in the bloodstream. Here we report that incorporation of specially designed amino acid analogues at the P1' position, directly C-terminal of the enzyme cleavage site, renders peptides, including glucagon-like peptide-1 (7-36) amide (GLP-1) and six other examples, highly resistant to serine protease degradation without significant alteration of their biological activity. We demonstrate the applicability of the method to a variety of proteases, including dipeptidyl peptidase IV (DPP IV), dipeptidyl peptidase 8 (DPP8), fibroblast activation protein α (FAPα), α-lytic protease (αLP), trypsin, and chymotrypsin. In summary, the "P1' modification" represents a simple, general, and highly adaptable method of generating enzymatically stable peptide-based therapeutics.