Lysosomes constitute only 4% of the intracellular volume of a normal human fibroblast. When human fibroblasts are incubated for 2-5 min with 20 microM [35S]cystine in Krebs-Ringer phosphate solution at pH 7.4, a minimum of 50-60% of the total radioactivity taken up by the cells is found sequestered into the lysosomal compartment in the form of cysteine. A lysosomal transport system, highly specific for cysteine, appears to facilitate this rapid lysosomal cysteine sequestration. Time courses of [35S]cysteine uptake into isolated, Percoll-purified fibroblast lysosomes at pH 7.0 and 37 degrees C are linear for the first 4-5 min and attain a steady state by 10 min. Lysosomal cysteine uptake displays a Km of 0.05 mM at pH 7.0 and an activation energy of 21 kcal/mol, corresponding to a Q10 of 3.2. The role of this transport system in delivering cysteine into lysosomes is supported by its pH curve showing a slow rate of cysteine transport at the acidic pHs between 5 and 6, but then increasing sevenfold between pH 6 and 7.5 to be maximally active near the cytosolic pH of 7. Carrier mediation by this lysosomal transport route demonstrates a high specificity for cysteine as indicated by the inability of the following amino acids to significantly inhibit at 5 mM the lysosomal uptake of 0.035 mM [35S]L-cysteine: ala, ser, pro, val, gly, homocysteine, D- or L-penicillamine, arg, asp, or leu. Similarly, D-cysteine and beta-mercaptopropionate were poor inhibitors, suggesting that both the L-isomer and alpha-amino group of cysteine appear to be required for recognition by the cysteine-specific transport system. In contrast, cysteamine, which lacks an alpha-carboxyl group, was able to strongly inhibit lysosomal cysteine uptake. The physiological importance of this cysteine-specific lysosomal transport system may be to aid lysosomal proteolysis by delivering cysteine into the lysosomal compartment to (a) maintain the catalytic activity of the thiol-dependent lysosomal enzymes and (b) break protein disulfide bridges at susceptible linkages, thereby allowing proteins to unfold, facilitating their degradation.