Background: Pseudomonas aeruginosa produces the Sec and Tat protein secretion machineries. The latter appears to be involved in the secretion of virulence factors, including phospholipase C (PlcH), and hence is a potential target of chemotherapeutic agents.
Methods: The signal sequence of OprM, the outer membrane subunit of the xenobiotic extrusion pumps, was substituted with that of PlcH. The antibiotic susceptibility of oprM-deficient cells expressing the hybrid protein PlcH-OprM was evaluated using the agar dilution method.
Results: The PlcH-OprM-expressing cells showed resistance to various MexAB-OprM substrate antibiotics. To evaluate the translocation route of PlcH-OprM, tatC encoding an indispensable component of the Tat machinery was knocked out in oprM-deficient cells. The tatC-oprM double mutant expressing PlcH-OprM exhibited antibiotic hypersusceptibility like the oprM-deficient cells, indicating that PlcH-OprM was translocated across the inner membrane exclusively through the Tat system.
Conclusions: This system can be used for the screening of Tat system inhibitors and will be an excellent model for the study of secretion and biogenesis of the β-barrel outer membrane proteins.
Copyright © 2013 S. Karger AG, Basel.