The ex vivo sensitivity of pediatric leukemia cells to the proteasome inhibitor bortezomib was compared to 3 next generation proteasome inhibitors: the epoxyketone-based irreversible proteasome inhibitors carfilzomib, its orally bio-available analog ONX 0912, and the immunoproteasome inhibitor ONX 0914. LC50 values were determined by MTT cytotoxicity assays for 29 childhood acute lymphoblastic leukemia and 12 acute myeloid leukemia patient samples and correlated with protein expression levels of the constitutive proteasome subunits (β5, β1, β2) and their immunoproteasome counterparts (β5i, β1i, β2i). Acute lymphoblastic leukemia cells were up to 5.5-fold more sensitive to proteasome inhibitors than acute myeloid leukemia cells (P<0.001) and the combination of bortezomib and dexamethasone proved additive/synergistic in the majority of patient specimens. Although total proteasome levels in acute lymphoblastic leukemia and acute myeloid leukemia cells did not differ significantly, the ratio of immuno/constitutive proteasome was markedly higher in acute lymphoblastic leukemia cells over acute myeloid leukemia cells. In both acute lymphoblastic leukemia and acute myeloid leukemia, increased ratios of β5i/β5, β1i/β1 and β2i/β2 correlated with increased sensitivity to proteasome inhibitors. Together, differential expression levels of constitutive and immunoproteasomes in pediatric acute lymphoblastic leukemia and acute myeloid leukemia constitute an underlying mechanism of sensitivity to bortezomib and new generation proteasome inhibitors, which may further benefit from synergistic combination therapy with drugs including glucocorticoids.