Heritability of pulmonary function estimated from pedigree and whole-genome markers

Front Genet. 2013 Sep 9:4:174. doi: 10.3389/fgene.2013.00174. eCollection 2013.

Abstract

Asthma and chronic obstructive pulmonary disease (COPD) are major worldwide health problems. Pulmonary function testing is a useful diagnostic tool for these diseases, and is known to be influenced by genetic and environmental factors. Previous studies have demonstrated that a substantial proportion of the variation in pulmonary function phenotypes can be explained by familial relationships. The availability of whole-genome single nucleotide polymorphism (SNP) data enables us to further evaluate the extent to which genetic factors account for variation in pulmonary function and to compare pedigree- to SNP-based estimates of heritability. Here, we employ methods developed in the animal breeding field to estimate the heritability of forced expiratory volume in one second (FEV1), forced vital capacity (FVC), and the ratio of these two measures (FEV1/FVC) among subjects in the Framingham Heart Study dataset. We compare heritability estimates based on pedigree-based relationships to those based on genome-wide SNPs. We find that, in a family-based study, estimates of heritability using SNP data are nearly identical to estimates based on pedigree information, and range from 0.50 for FEV1 to 0.66 for FEV1/FVC. Therefore, we conclude that genetic factors account for a sizable proportion of inter-individual differences in pulmonary function, and that estimates of heritability based on SNP data are nearly identical to estimates based on pedigree data. Finally, our findings suggest a higher heritability for FEV1/FVC compared to either FEV1 or FVC.

Keywords: FEV1; FEV1/FVC; FVC; genetic; heritability; pulmonary function.