Five-Year Longitudinal MRI Follow-up and (1)H Single Voxel MRS in 14 patients with Gliomatosis Treated with Temodal, Radiotherapy and Antiangiogenic Therapy

Neuroradiol J. 2011 Jun 30;24(3):401-14. doi: 10.1177/197140091102400309. Epub 2011 Jun 24.

Abstract

Gliomatosis cerebri (GC) is a challenging tumor, considered to have a poor prognosis and poor response to treatments. The purpose of this study is to better understand glial tumor metabolism and post chemotherapy, radiotherapy and antiangiogenic variations in a longitudinal study to determine cerebral variation in MRS area, amplitude, and ratios of metabolites and spectral profiles during a five year longitudinal follow-up in 14 patients with gliomatosis without initial hyperperfusion and treated with chemotherapy (Temozolomide (Temodal(®))), radiotherapy and subsequent antiangiogenic therapy. The study also aimed to detect changes in infiltration, proliferation, lipids or glycolytic metabolism, as these changes could be monitored longitudinally in humans with glial brain tumors (low and high grade) after therapy, using conventional magnetic resonance imaging (MRI), spectroscopy (MRS) and MR perfusion. Most patients had first initial clinical and MRS improvement and stable MRI. After 12 to 24 chemotherapy treatment cycles MRS usually showed an increase in the Cho/Cr ratio (proliferation) and sometimes contrast enhancements. Later, the patients showed clinical deterioration and radiotherapy was started. There was an improvement with radiotherapy that lasted nine to 18 months. This was followed by a worsening that led to try antiangiogenic therapy. Later in the evolution for three patients with hyperperfusion this symptom disappeared, but proliferation, infiltration and glycolytic metabolism remained at a high level. Spectroscopic and metabolic changes often occur well before clinical deterioration and sometimes before improvement. Therefore, MRS could be more sensitive and could detect changes earlier than MRI and is sometimes predictive. Despite the difficulty, the variability and unknown factors, these repeated measurements give us a better insight into the nature of the different processes, tumor progression and could lead to better understanding of therapeutic response.