NiO nanostructures were synthesized via a simple wet chemical solution method with varying calcination temperatures. The synthesized nanostructures were characterized by XRD, TG/DSC, FT-IR and high-resolution electron microscopy techniques. The nanostructures revealed dependence of particle size, stoichiometry, optical band gap and luminescence intensity on calcination temperatures. The materials exhibited efficient electrochemical properties with decent capacitance values. Ethylene-glycol-based nanofluids of these nanoparticles registered excellent thermal conductivity enhancement of 59-69% in the room temperature region and 125% enhancement at higher temperatures (80 ° C), establishing NiO to be a top-draw contender for high-performance heat transfer fluids.