P. brasiliensis virulence is affected by SconC, the negative regulator of inorganic sulfur assimilation

PLoS One. 2013 Sep 16;8(9):e74725. doi: 10.1371/journal.pone.0074725. eCollection 2013.

Abstract

Conidia/mycelium-to-yeast transition of Paracoccidioidesbrasiliensis is a critical step for the establishment of paracoccidioidomycosis, a systemic mycosis endemic in Latin America. Thus, knowledge of the factors that mediate this transition is of major importance for the design of intervention strategies. So far, the only known pre-requisites for the accomplishment of the morphological transition are the temperature shift to 37 °C and the availability of organic sulfur compounds. In this study, we investigated the auxotrophic nature to organic sulfur of the yeast phase of Paracoccidioides, with special attention to P. brasiliensis species. For this, we addressed the role of SconCp, the negative regulator of the inorganic sulfur assimilation pathway, in the dimorphism and virulence of this pathogen. We show that down-regulation of SCONC allows initial steps of mycelium-to-yeast transition in the absence of organic sulfur compounds, contrarily to the wild-type fungus that cannot undergo mycelium-to-yeast transition under such conditions. However, SCONC down-regulated transformants were unable to sustain yeast growth using inorganic sulfur compounds only. Moreover, pulses with inorganic sulfur in SCONC down-regulated transformants triggered an increase of the inorganic sulfur metabolism, which culminated in a drastic reduction of the ATP and NADPH cellular levels and in higher oxidative stress. Importantly, the down-regulation of SCONC resulted in a decreased virulence of P. brasiliensis, as validated in an in vivo model of infection. Overall, our findings shed light on the inability of P. brasiliensis yeast to rely on inorganic sulfur compounds, correlating its metabolism with cellular energy and redox imbalances. Furthermore, the data herein presented reveal SconCp as a novel virulence determinant of P. brasiliensis.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Fungal Proteins / metabolism
  • Gene Expression Regulation, Fungal
  • Paracoccidioides / metabolism*
  • Paracoccidioides / pathogenicity*
  • Paracoccidioidomycosis / microbiology
  • Sulfur / metabolism*
  • Virulence

Substances

  • Fungal Proteins
  • Sulfur

Grants and funding

J.F.M. and J.G.R. were supported by a PhD grant from Fundação para a Ciência e Tecnologia (FCT). This work was supported by a grant from FCT (PTDC/BIA-MIC/108309/2008). M. Sturme. and M. Saraiva are Ciência 2008 fellows. The authors would also like to thank FAPESP (Fundação para Amparo a Pesquisa do Estado de São Paulo) and CNPq (Conselho Nacional de Desenvolvimento Científico e Tecnológico) for financial support. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.