Defining the interaction of perforin with calcium and the phospholipid membrane

Biochem J. 2013 Dec 15;456(3):323-35. doi: 10.1042/BJ20130999.

Abstract

Following its secretion from cytotoxic lymphocytes into the immune synapse, perforin binds to target cell membranes through its Ca(2+)-dependent C2 domain. Membrane-bound perforin then forms pores that allow passage of pro-apoptopic granzymes into the target cell. In the present study, structural and biochemical studies reveal that Ca(2+) binding triggers a conformational change in the C2 domain that permits four key hydrophobic residues to interact with the plasma membrane. However, in contrast with previous suggestions, these movements and membrane binding do not trigger irreversible conformational changes in the pore-forming MACPF (membrane attack complex/perforin-like) domain, indicating that subsequent monomer-monomer interactions at the membrane surface are required for perforin pore formation.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Animals
  • Calcium / chemistry
  • Calcium / metabolism*
  • Cell Membrane / chemistry
  • Cell Membrane / genetics
  • Cell Membrane / metabolism*
  • Humans
  • Jurkat Cells
  • K562 Cells
  • Mice
  • Mice, Knockout
  • Phospholipids / chemistry
  • Phospholipids / metabolism*
  • Pore Forming Cytotoxic Proteins / chemistry
  • Pore Forming Cytotoxic Proteins / genetics
  • Pore Forming Cytotoxic Proteins / metabolism*
  • Protein Structure, Tertiary
  • Rats

Substances

  • Phospholipids
  • Pore Forming Cytotoxic Proteins
  • perforin, mouse
  • perforin, rat
  • Calcium