In this Communication, we present experimental studies that put new insight into the puzzling nature of the Debye relaxation found in the supercooled liquid state of racemic ibuprofen. The appearance of D-relaxation in the loss spectra of non-hydrogen bonding methylated derivate of ibuprofen has proven that Debye relaxation is related solely with conformational changes of the carboxyl group, termed in this paper as synperiplanar-antiperiplanar. Our studies indicate that the presence of hydrogen bonding capabilities is not here the necessary condition to observe Debye process, however, their occurrence might strongly influence α- and D-relaxations dynamics. Interestingly, the activation energy of the D-process in ibuprofen methyl ester on approaching T(g) was found to be perfectly consistent with that reported for ibuprofen by Affouard and Correia [J. Phys. Chem. B 114, 11397-11402 (2010)] (~39 kJ/mol). Finally, IR measurements suggest that the equilibrium between conformers concentration depends on time and temperature, which might explain why the appearance of D-relaxation in supercooled ibuprofen depends on thermal history of the sample.