Tagmentation-based whole-genome bisulfite sequencing

Nat Protoc. 2013 Oct;8(10):2022-32. doi: 10.1038/nprot.2013.118. Epub 2013 Sep 26.

Abstract

Epigenetic modifications such as carbon 5 methylation of the cytosine base in a CpG dinucleotide context are involved in the onset and progression of human diseases. A comprehensive understanding of the role of genome-wide DNA methylation patterns, the methylome, requires quantitative determination of the methylation states of all CpG sites in a genome. So far, analyses of the complete methylome by whole-genome bisulfite sequencing (WGBS) are rare because of the required large DNA quantities, substantial bioinformatic resources and high sequencing costs. Here we describe a detailed protocol for tagmentation-based WGBS (T-WGBS) and demonstrate its reliability in comparison with conventional WGBS. In T-WGBS, a hyperactive Tn5 transposase fragments the DNA and appends sequencing adapters in a single step. T-WGBS requires not more than 20 ng of input DNA; hence, the protocol allows the comprehensive methylome analysis of limited amounts of DNA isolated from precious biological specimens. The T-WGBS library preparation takes 2 d.

Publication types

  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, Non-P.H.S.

MeSH terms

  • Animals
  • DNA Methylation*
  • Epigenesis, Genetic
  • Genomics / methods*
  • Humans
  • Mice
  • Sequence Analysis, DNA / methods*
  • Sulfites / chemistry

Substances

  • Sulfites
  • hydrogen sulfite