Separate lines of research have demonstrated that rises in cortisol can benefit memory consolidation, as can the occurrence of sleep soon after encoding. For the first time, we demonstrate that pre-learning cortisol interacts with sleep to benefit memory consolidation, particularly for negative arousing items. Resting cortisol levels during encoding were positively correlated with subsequent memory, but only following a period of sleep. There was no such relation following a period of wakefulness. Using eye tracking, we further reveal that for negative stimuli, this facilitative effect may arise because cortisol strengthens the relationship between looking time at encoding and subsequent memory. We suggest that elevated cortisol may "tag" attended information as important to remember at the time of encoding, thus enabling sleep-based processes to optimally consolidate salient information in a selective manner. Neuroimaging data suggest that this optimized consolidation leads to a refinement of the neural processes recruited for successful retrieval of negative stimuli, with the retrieval of items attended in the presence of elevated cortisol and consolidated over a night of sleep associated with activity in the amygdala and vmPFC.
Keywords: attention; emotion; fMRI; glucocorticoids; stress.
© The Author 2013. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: [email protected].