The in vivo blood compatibility of bio-inspired small diameter vascular graft: effect of submicron longitudinally aligned topography

BMC Cardiovasc Disord. 2013 Oct 1:13:79. doi: 10.1186/1471-2261-13-79.

Abstract

Background: Cardiovascular disease is the leading cause of deaths worldwide and the arterial reconstructive surgery remains the treatment of choice. Although large diameter vascular grafts have been widely used in clinical practices, there is an urgent need to develop a small diameter vascular graft with enhanced blood compatibility. Herein, we fabricated a small diameter vascular graft with submicron longitudinally aligned topography, which mimicked the tunica intima of the native arterial vessels and were tested in Sprague-Dawley (SD) rats.

Methods: Vascular grafts with aligned and smooth topography were prepared by electrospinning and were connected to the abdominal aorta of the SD rats to evaluate their blood compatibility. Graft patency and platelet adhesion were evaluated by color Doppler ultrasound and immunofluorescence respectively.

Results: We observed a significant higher patency rate (p = 0.021) and less thrombus formation in vascular graft with aligned topography than vascular graft with smooth topography. However, no significant difference between the adhesion rates on both vascular grafts (smooth/aligned: 0.35‰/0.12‰, p > 0.05) was observed. Moreover, both vascular grafts had few adherent activated platelets on the luminal surface.

Conclusion: Bionic vascular graft showed enhanced blood compatibility due to the effect of surface topography. Therefore, it has considerable potential for using in clinical application.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Animals
  • Aorta, Abdominal / pathology
  • Aorta, Abdominal / physiology
  • Aorta, Abdominal / surgery*
  • Blood Vessel Prosthesis Implantation / instrumentation*
  • Blood Vessel Prosthesis Implantation / methods*
  • Blood Vessel Prosthesis Implantation / standards
  • Blood Vessel Prosthesis* / standards
  • Platelet Adhesiveness / physiology
  • Rats
  • Rats, Sprague-Dawley
  • Vascular Patency / physiology*