Johne's disease is a chronic gastroenteritis of cattle caused by Mycobacterium avium subsp. paratuberculosis that afflicts 40% of dairy herds worldwide. M. avium subsp. paratuberculosis-infected cattle can remain asymptomatic for years while transmitting the pathogen via fecal contamination and milk. Current serodiagnosis with enzyme-linked immunosorbent assays (ELISAs) fails to detect asymptomatic M. avium subsp. paratuberculosis-infected cattle due to the use of poorly defined antigens and knowledge gaps in our understanding of M. avium subsp. paratuberculosis components eliciting pathogen-specific immune responses. We set out to (i) define a subset of proteins that contain putative antigenic targets and (ii) screen these antigen pools for immunogens relevant in detecting infection. To accomplish our first objective, we captured and resolved M. avium subsp. paratuberculosis-secreted proteins using a 2-step fractionation method and reverse-phase liquid chromatography to identify 162 unique proteins, of which 66 had not been previously observed in M. avium subsp. paratuberculosis culture filtrates. Subsequent screening of M. avium subsp. paratuberculosis-secreted proteins showed four antigens, of which one or more reacted on immunoblotting with individual serum samples from 35 M. avium subsp. paratuberculosis-infected cows. Moreover, these novel antigens reacted with sera from 6 low M. avium subsp. paratuberculosis shedders and 3 fecal-culture-positive cows labeled as ELISA seronegative. The specificity of these antigens was demonstrated using negative-control sera from uninfected calves (n = 5) and uninfected cows (n = 5), which did not react to any of these antigens in immunoblotting. As three of the four antigens are novel, their characterization and incorporation into an ELISA-based format will aid in detecting asymptomatic cattle in early or subclinical stages of disease.