The trimolecular complex composed of autoreactive T-cell receptor, MHC class II, and an autoantigenic peptide plays a central role in the activation of pathogenic Islet-specific CD4+ T cells in type 1 diabetes (T1D). We isolated and characterized novel antibodies against autoreactive T-cell epitopes associated with T1D. Our antibodies mimic the specificity of the T-cell receptor (TCR), while binding MHC class II/peptide complexes in an autoantigen peptide specific, MHC-restricted manner. The isolated TCR-like antibodies were directed against the minimal T-cell epitope GAD-555-567 in the context of the HLA-DR4-diabetic-associated molecule. A representative high-affinity TCR-like antibody clone (G3H8) enabled the detection of intra- and extra-cellular DR4/GAD-555-567 complexes in antigen presenting cells. I561M single mutation at the central position (P5) of the GAD-555-567 peptide abolished the binding of G3H8 to the DR4/GAD complex, demonstrating its high fine TCR-like specificity. The G3H8 TCR-like antibody significantly inhibited GAD-555-567 specific, DR4 restricted T-cell response in vitro and in vivo in HLA-DR4 transgenic mice. Our findings constitute a proof-of-concept for the utility of TCR-like antibodies as antigen-specific immunomodulation agents for regulating pathogenic T-cells and suggest that TCR-like antibodies targeting autoreactive MHC class II epitopes are valuable research tools that enable studies related to antigen presentation as well as novel therapeutic agents that may be used to modulate autoimmune disorders such as T1D.
Keywords: Autoimmunity; Immunomodulation; Recombinant antibodies; T Cell Receptor Like; T1D; TCRL; Type 1 Diabetes; Type 1 diabetes.
Copyright © 2013 Elsevier Ltd. All rights reserved.