Background: Activation of wild-type p53 with the small molecule sirtuin inhibitor Tenovin-6 (Tnv-6) induces p53-dependent apoptosis in many malignant cells. In contrast, Tnv-6 reduces chronic lymphocytic leukaemia (CLL) cell viability with dysregulation of autophagy, without increasing p53-pathway activity.
Methods: Here, we have investigated whether a quiescent phenotype (unique to CLL) determines the Tnv-6 response, by comparing the effects of Tnv-6 on activated and proliferating CLL. We further studied if these responses are p53-dependent.
Results: Unlike quiescent cells, cell death in activated cultures treated with Tnv-6 was consistently associated with p53 upregulation. However, p53 acetylation remained unchanged, without caspase-3 cleavage or apoptosis on electron microscopy. Instead, cellular ultrastructure and protein profiles indicated autophagy inhibition, with reduced ubiquitin-proteasome activity. In specimens with mutant TP53 cultured with Tnv-6, changes in the autophagy-associated protein LC3 occurred independently of p53. Cells treated with Tnv-6 analogues lacking sirtuin inhibitory activity had attenuated LC3 lipidation compared with Tnv-6 (P0.01), suggesting that autophagy dysregulation occurs predominantly through an effect on sirtuins.
Conclusion: These cell cycle and p53-independent anti-leukaemic mechanisms potentially offer novel therapeutic approaches to target leukaemia-sustaining cells in CLL, including in disease with p53-pathway dysfunction. Whether targets in addition to sirtuins contribute to autophagy dysregulation by Tnv-6, requires further investigation.