The anisotropic magnetic properties of the antiferromagnetic compound CePd2Ge2, crystallizing in the tetragonal crystal structure have been investigated in detail on a single crystal grown by the Czochralski method. From the electrical transport, magnetization and heat capacity data, the Néel temperature is confirmed to be 5.1 K. Anisotropic behaviour of the magnetization and resistivity is observed along the two principal crystallographic directions-namely, [100] and [001]. The isothermal magnetization measured in the magnetically ordered state at 2 K exhibits a spin reorientation at 13.5 T for the field applied along the [100] direction, whereas the magnetization is linear along the [001] direction attaining a value of 0.94 μ(B)/Ce at 14 T. The reduced value of the magnetization is attributed to the crystalline electric field (CEF) effects. A sharp jump in the specific heat at the magnetic ordering temperature is observed. After subtracting the phononic contribution, the jump in the heat capacity amounts to 12.5 J K(-1)mol(-1) which is the expected value for a spin ½ system. From the CEF analysis of the magnetization data the excited crystal field split energy levels were estimated to be at 120 K and 230 K respectively, which quantitatively explains the observed Schottky anomaly in the heat capacity. A magnetic phase diagram has been constructed based on the field dependence of magnetic susceptibility and the heat capacity data.