Liver injuries, liver tumor resection, and liver transplantation are known to be responsible for ischemia/reperfusion (I/R) injury that, in turn, gives rise to liver damage. This study was undertaken to investigate the possible protective effect of eugenol against the damage induced by I/R in rat livers as well as to explore possible mechanisms of action. Male rats were divided into four groups: sham-operated, I/R only, and two groups that received 10 or 100 mg eugenol/kg/day (Eug10 and Eug100, respectively) for 15 days by gavage and were then subjected to I/R, i.e. an ischemia induced for 45 min followed by re-perfusion for 6 h. The rats were euthanized and liver tissues and blood collected for examination. The results showed that I/R induced massive hepatic structural and functional damage. Eug10-treated rats had improvement in both liver function and structure, and inhibition of I/R-induced increases in serum myeloperoxidase (MPO), tumor necrosis factor (TNF)-α, as well as hepatic nuclear factor-κB (NF-κB) p65 and caspase-3 expression. Eug10 treatment also inhibited the degree of loss in reduced glutathione (GSH) and of rise in malondialdehyde (MDA) levels in liver tissues induced by I/R. In contrast, augmentation of liver damage induced by I/R was noted in Eug100-treated rats, with these hosts displaying significant increases in oxidant, inflammatory, and apoptotic markers relative to levels seen in I/R-only rats. The results of the present study provide the first evidence that a low dose of eugenol may protect the liver against I/R injury in part by decreasing levels of lipid peroxidation, down-regulating inflammatory mediators, and inhibiting apoptosis, and that a larger dose amplifies the liver injury via oxidant and inflammatory effects.
Keywords: Caspase-3; MDA; NF-κB; eugenol; hepatic I/R.