Sharp dynamic thermal gradient (∇T ≈ 45 °C mm(-1)) field-driven assembly of cylinder-forming block copolymer (c-BCP) films filled with PS-coated gold nanoparticles (AuNPs; dNP ≈ 3.6 nm, φNP ≈ 0-0.1) is studied. The influence of increasing AuNP loading fraction on dispersion and assembly of AuNPs within c-BCP (PS-PMMA) films is investigated via both static and dynamic thermal gradient fields. With φNP increasing, a sharp transition from vertical to random in-plane horizontal cylinder orientation is observed due to enrichment of AuNPs at the substrate side and favorable interaction of PMMA chains with gold cores. Furthermore, a detachable capping elastomer layer can self-align these random oriented PMMA microdomains into unidirectional hybrid AuNP/c-BCP nanolines, quantified with an alignment order parameter, S.
Keywords: aligned nanostructure; block copolymers; composites; nanoparticles; zone annealing.
© 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.