Induced pluripotent stem (iPS) cell-derived cardiomyocytes (iPS-CMs) has been expected as a cell source for therapy of serious heart failure. However, it is unclear whether the function of iPS-CMs is modulated by the host sympathetic nervous system. Here we developed a device for co-culture of sympathetic neurons and iPS-CMs using microfabrication technique. The device consisted of a culture chamber and a microelectrode-array (MEA) substrate. The superior cervical ganglion (SCG) neurons were co-cultured with iPS-CMs in a microfabricated device, which had multiple compartments. Several days after seeding, synapses were formed between SCG neurons and iPS-CMs, as confirmed by immunostaining. Spontaneous electrical activities of the SCG neurons and the iPS-CMs were observed from the electrode of the MEA substrate. The beat rate of iPS-CMs increased after electrical stimulation of the co-cultured SCG neurons. Such changes in the beat rate were prevented in the presence of propranolol, a β-adrenoreceptor antagonist. These results suggest that the microfabricated device will be utilized for studying the functional modulation of iPS-CMs by connected sympathetic neurons.