Cobalt monoxide-doped porous graphitic carbon microspheres for supercapacitor application

Sci Rep. 2013 Oct 11:3:2925. doi: 10.1038/srep02925.

Abstract

A novel design and facile synthesis process for carbon based hybrid materials, i.e., cobalt monoxide (CoO)-doped graphitic porous carbon microspheres (Co-GPCMs), have been developed. With the synthesis strategy, the mixture of cobalt gluconate, α-cyclodextrin and poly (ethylene oxide)₁₀₆-poly (propylene oxide)₇₀-poly (ethylene oxide)₁₀₆ is treated hydrothermally, followed by pyrolysis in argon. The resultant Co-GPCMs exhibits a porous carbon matrix with localized graphitic structure while CoO nanodots are embedded in the carbon frame. Thus, the Co-GPCMs effectively combine the electric double-layer capacitance and pseudo-capacitance when used as the electrode in supercapacitor, which lead to a higher operation voltage (1.6 V) and give rise to a significantly higher energy density. This study provides a new research strategy for electrode materials in high energy density supercapacitors.

Publication types

  • Research Support, Non-U.S. Gov't