Insight into chemical to electrical transduction mechanisms taking place at the surface of a single metal oxide nanowire is reported due to its outstanding importance for determining the characteristics of resistive solid state gas sensors. The surface chemical reaction kinetics is discussed considering competitiveness phenomena among different active sites and gas species on the nanowire taken as a metal oxide monocrystal at the nanoscale level. Experimental results for different representative gas molecules are shown to determine and understand sensor selectivity. The reported gas species are carbon monoxide and water vapour as general reference molecules, and ethanol and ammonia species as special references for gas-solid interactions, respectively, on acid and basic sites. Kinetic properties are proposed as particular signatures for each of the possible surface chemical reactions, allowing their identification and distinction. Likewise, features such as thermal inertia limitation and effects of the molecular and monoatomic absorbed oxygen are also estimated considering operation working modes based on nanowire self-heating. Furthermore, the applicability of a surface electrical field on a one-dimensional metal oxide nanostructure to enhance the surface ionization of the absorbed molecules is also reviewed as a new type of metal oxide based nanosensor for achieving improved selectivity.