Introduction: Fuzilizhong Pills (FZLZ), a modified form of a famous traditional Chinese medicine (TCM) Lizhong Wan in Treatise on Febrile Diseases and consisting of Panax ginseng C.A.Mey. (Ren Shen), Aconitum carmichaelii Debx. (Fu Zi, Zhi), Glycyrrhiza uralensis Fisch., Glycyrrhiza inflata Bat. or Glycyrrhiza glabra L. (Gan Cao), Atractylodes macrocephala Koidz. (Bai Zhu) and Zingiber offcinale Rosc. (Gan Jiang), show strong clinical therapeutic effects for dyspnea and pulmonary oedema. However, the bioactive compounds are still unclear. In this study, FZLZ was analysed using a rapid detection method to identify its anti-inflammatory and spasmolytic constituents.
Objective: To develop a simple screening method to detect the anti-inflammatory and spasmolytic constituents of FZLZ.
Methods: Ultra-performance liquid chromatography with quadrupole time-of-flight mass spectrometry combined with dual-bioactive (NF-κB and β2 -adrenergic receptor) luciferase reporter assay systems was employed.
Results: Two β2 -adrenergic receptor agonists (salsolinol and higeramine) and three terpenoidal analogues of NF-κB inhibitors such as ginsenosides derivatives, triperpenoids derivatives and diester-diterpenoid aconitum alkaloid derivatives were characterised. Mesaconitine, flaconitine, ginsenosides Rb2, Rf, Rg2, F1 and Ro were considered to be new NF-κB inhibitors. Furthermore, IL-8 detection by enzyme linked immunosorbent assay confirmed the anti-inflammatory effects of the potential NF-κB inhibitors.
Conclusion: Compared with conventional fingerprints, activity-integrated fingerprints that contain both chemical and bioactive details offer a more comprehensive understanding of the chemical composition of plant materials. This strategy clearly demonstrated that dual bioactivity-integrated fingerprinting is a powerful tool for the improved screening and identification of potential dual-target lead compounds in complex herbal medicines.
Keywords: Dual-bioactivity-integrated fingerprinting; Fuzilizhong pills; UPLC-QTOF/MS/MS; nuclear factor-κB inhibitors; β2 adrenergic receptor agonists.
Copyright © 2013 John Wiley & Sons, Ltd.