Thermodynamics is applied to formulate general equations for internal energies and grand potential for a system consisting of a dielectric liquid nucleus of a new phase on a charged insoluble conducting sphere within a uniform macroscopic one- or multicomponent mother phase. The currently available model for ion-induced nucleation assumes complete spherical symmetry of the system, implying that the seed ion is immediately surrounded by the condensing liquid from all sides. We take a step further and treat more realistic geometries, where a cap-shaped liquid cluster forms on the surface of the seed particle. To take into account spontaneous polarization of surface layer molecules we introduce the electrical surface and line excess quantities.