Temperature-dependent piezoresistivity in an MWCNT/epoxy nanocomposite temperature sensor with ultrahigh performance

Nanotechnology. 2013 Nov 15;24(45):455501. doi: 10.1088/0957-4484/24/45/455501. Epub 2013 Oct 11.

Abstract

A temperature sensor was fabricated from a polymer nanocomposite with multi-walled carbon nanotube (MWCNT) as nanofiller (i.e., MWCNT/epoxy). The electrical resistance and temperature coefficient of resistance (TCR) of the temperature sensor were characterized experimentally. The effects of temperature (within the range 333-373 K) and MWCNT content (within the range 1-5 wt%) were investigated thoroughly. It was found that the resistance increases with increasing temperature and decreasing MWCNT content. However, the resistance change ratio related to the TCR increases with increasing temperature and MWCNT content. The highest value of TCR (0.021 K(-1)), which was observed in the case of 5 wt% MWCNT, is much higher than those of traditional metals and MWCNT-based temperature sensors. Moreover, the corresponding numerical simulation-conducted to explain the above temperature-dependent piezoresistivity of the nanocomposite temperature sensor-indicated the key role of a temperature-dependent tunneling effect.