Introduction: We investigated the optimal method for transportation of isolated porcine islets from an isolation facility to a transplant hospital or research center in terms of temperature, oxygen supply, and shaking effect.
Methods: Commercially available insulator boxes with thermoregulators exposed for 5 hours under two external temperatures (4°C and 37°C) were monitored using HOBO temperature loggers. To find the optimal transport device, we compared islet counts, viability, quality, and function in conical tubes, gas-permeable bags (GPB) and gas-permeable flasks (GPF) after 1, 3 and 5 hours. To evaluate the effects of shaking on islets, we also analyzed the difference between a control and a shaking group in each device with time.
Results: Commercially available Styrofoam insulators with thermoregulators maintained the internal temperature near the target. Islet recovery rate for GPF, which was higher than other devices, was maintained, while those decreased with time for conical tube and GPB containers adenosine diphosphate/adenosine triphosphate (ADP/ATP) ratio for GPF was lower than other devices, albeit not significantly fluoroscein acrimide/propidium iodide (AO/PI) ratio for GPF was higher than other devices after 5 hours. Glucose stimulated index was not different among the devices. In comparison with the control group, shaking yielded comparable islet survival, viability and function.
Conclusion: Our study demonstrated that the use of commercially available insulator boxes with thermoregulators maintained internal temperature close to the target value and that GPF was more favorable for islet oxygenation during transportation. This study also suggested negligible impact of shaking on isolated porcine islets during transportation.
Copyright © 2013 Elsevier Inc. All rights reserved.