Self-assembled growth of multi-layer graphene on planar and nano-structured substrates and its field emission properties

Nanoscale. 2013 Dec 21;5(24):12388-93. doi: 10.1039/c3nr04145j.

Abstract

Vertical multi-layer graphenes (MLGs) have been synthesized without a catalyst on planar and nano-structured substrates by using microwave plasma enhanced chemical vapor deposition. The growth of MLGs on non-carbon substrates is quite different from that on carbon-based substrates. It starts with a pre-deposition of a carbon buffer layer to achieve a homo-epitaxial growth. The nucleation and growth of MLGs was found to be strongly influenced by the surface geometry and topography of substrates. Planar substrates suitable for atom diffusion are favorable for growing large-scale MLGs, and defect-rich substrates are beneficial for quick MLG nucleation and thus the growth of densely distributed MLGs. The field emission properties of MLGs grown on planar and nano-structured substrates were studied and are found to be strongly dependent on the nature of substrates. Substrates having good conductivity and large aspect ratios such as carbon nanotubes (CNTs) have good field emission properties. The best field emission properties of MLG/CNT composites with optimal shapes were observed with a low turn-on electric field of 0.93 V μm(-1), a threshold field of 1.56 V μm(-1), a maximum emission current density of 60.72 mA cm(-2), and excellent stability.

Publication types

  • Research Support, Non-U.S. Gov't