Magnetic resonance imaging of the liver: apparent diffusion coefficients from multiexponential analysis of b values greater than 50 s/mm2 do not respond to caloric intake despite increased portal-venous blood flow

Invest Radiol. 2014 Mar;49(3):138-46. doi: 10.1097/RLI.0000000000000005.

Abstract

Purpose: The purpose of this study was to measure potential changes of the apparent diffusion coefficient (ADC) in diffusion-weighted imaging of the liver before and after caloric challenge in correlation to the induced changes in portal vein flow.

Materials and methods: The study was approved by the local ethics committee. Each of 10 healthy volunteers underwent 4 measurements in a 1.5-T whole-body magnetic resonance scanner on 2 different days: a first scan after fasting for at least 8 hours and a second scan 30 minutes after intake of a standardized caloric either a protein- or carbohydrate-rich meal. Diffusion-weighted spin-echo echo-planar magnetic resonance images were acquired at b values of 0, 50, 150, 250, 500, 750, and 1000 s/mm. In addition, portal vein flow was quantified with 2-dimensional phase-contrast imaging (velocity encoding parallel to flow direction, 60 cm/s). Mean ADC values for regions of interest in 3 different slices were measured from b50 to b250 and from b500 to b1000 images.

Results: Carbohydrate- and protein-rich food intake both resulted in a substantial increase in the portal vein flow (fasting state, 638.6 ± 202.3 mL/min; after protein intake, 1322 ± 266.8; after carbohydrate intake, 1767 ± 421.6). The signal decay with increasingly strong diffusion weighting (b values from 0 to 1000 s/mm2) exhibited a triexponential characteristic, implying fast, intermediate, and slow-moving water-molecule proton-spin ensembles in the liver parenchyma. Mean ADC for high b values (b500-b1000) after fasting was 0.93 ± 0.09 × 10 mm/s; that after protein intake, 0.93 ± 0.11 × 10; and that after carbohydrate intake, 0.93 ± 0.08 × 10. For intermediate b values (b50-b250), the signal-decay constants were 1.27 ± 0.14 × 10 mm/s, 1.28 ± 0.15 × 10, and 1.31 ± 0.09 × 10, respectively. There was no statistically significant difference between fasting and caloric challenge.

Conclusions: The postprandial increase in portal vein flow is not accompanied by a change of liver parenchymal ADC values. In clinical diffusion imaging, patients may be scanned without prescan food-intake preparations. To minimize interference of perfusion effects, liver-tissue molecular water diffusion should be quantified using high b values (≥500 s/mm) only.

Publication types

  • Controlled Clinical Trial

MeSH terms

  • Adult
  • Algorithms
  • Blood Flow Velocity / physiology
  • Diffusion Magnetic Resonance Imaging / methods*
  • Energy Intake / physiology*
  • Female
  • Humans
  • Image Enhancement / methods
  • Image Interpretation, Computer-Assisted / methods
  • Liver / anatomy & histology*
  • Liver / blood supply
  • Liver / physiology*
  • Liver Circulation / physiology
  • Male
  • Portal Vein / anatomy & histology*
  • Portal Vein / physiology*
  • Postprandial Period / physiology*
  • Reference Values
  • Reproducibility of Results
  • Sensitivity and Specificity
  • Young Adult