Metabolism has a decisive role in many fundamental biological processes, including organism development and tissue homeostasis. Here we describe a protocol for fast and reliable (13)C-isotope-based in vivo metabolic profiling. This protocol covers the loading of isotope precursor; extraction, preparation and quantification of the labeled lipid metabolites (e.g., the prenyl lipid CoQ10) by the means of HPLC-MS; and its analysis in zebrafish embryos. This protocol can be applied to different types of experimental settings, including tissue-specific metabolic analyses or dynamic metabolic changes that occur during vertebrate embryogenesis. The protocol takes 5-7 d to complete, requiring minimal equipment and analytical expertise, and it represents a unique alternative to the existing ex vivo (e.g., cell lines) isotope-based metabolic methods. This procedure represents a valuable approach for researchers interested in studying the effect of gene manipulation on lipid metabolism in zebrafish and in understanding the genetic conditions that result in metabolism dysfunction.