This study aims to evaluate the relationship between the cyclooxygenase 2 (COX2) G1195A (rs689465) polymorphism and the risk of prostate cancer in a Japanese population and the associations between COX2 polymorphisms and clinicopathological characteristics, including Gleason grade and prostate-specific antigen (PSA) grade. We recruited 134 patients with prostate cancer and 86 healthy controls matched for age and smoking status. The COX2 G1195A polymorphism status was determined by polymerase chain reaction and restriction fragment length polymorphism analysis. Genotype distributions (p = 0.028) and allelic frequencies (p = 0.014) differed significantly between prostate cancer and control groups in terms of the COX2 G1195A polymorphism (Pearson's χ (2) test). Logistic regression analysis of case and control outcomes showed an odds ratio between the GG and AA genotypes of 3.15 (95% confidence interval = 1.27-8.08, p = 0.014), indicating an increased risk of prostate cancer associated with the AA genotype. Subset analysis revealed no significant associations between this polymorphism and clinicopathological characteristics of prostate cancer. This study demonstrated a relationship between the COX2 G1195A variant and prostate cancer risk. This polymorphism may merit further investigation as a potential genomic marker for the early detection of prostate cancer. Our results support the hypothesis that rs689465 influences susceptibility to prostate cancer; however, prostate cancer progression was not associated with rs689465 in a Japanese population.