Background and purpose: Cerebral arteriovenous malformation (AVM) is a vascular disease that disrupts normal blood flow and leads to serious neurological impairment or death. Aberrant functions of AVM-derived brain endothelial cells (AVM-BECs) are a disease hallmark. Our aim was to use microRNA-18a (miR-18a) as a therapeutic agent to improve AVM-BEC function.
Methods: Human AVM-BECs were tested for growth factor production and proliferation under different shear flow conditions and evaluated for tubule formation. Thrombospondin-1, inhibitor of DNA-binding protein 1, and vascular endothelial growth factor (VEGF) isotype mRNA levels were quantified by quantitative real-time polymerase chain reaction. Thrombospondin-1, VEGF-A, and VEGF-D protein expression was measured using enzyme-linked immunosorbent assay. Proliferation and tubule formation were evaluated using bromodeoxyuridine incorporation and growth factor-reduced Matrigel assays, respectively.
Results: miR-18a increased thrombospondin-1 production but decreased inhibitor of DNA-binding protein 1, a transcriptional repressor of thrombospondin-1. miR-18a reduced VEGF-A and VEGF-D levels, both overexpressed in untreated AVM-BECs. This is the first study reporting VEGF-D overexpression in AVM. These effects were most prominent under arterial shear flow conditions. miR-18a also reduced AVM-BEC proliferation, improved tubule formation, and was effectively internalized by AVM-BECs in the absence of extraneous transfection reagents.
Conclusions: We report VEGF-D overexpression in AVM and the capacity of miR-18a to induce AVM-BECs to function more normally. This highlights the clinical potential of microRNA as a treatment for AVM and other vascular diseases.
Keywords: arteriovenous malformations; endothelial cells; microRNAs; thrombospondin 1; vascular endothelial growth factor D.