Quantum oscillations of the metallic triangular-lattice antiferromagnet PdCrO2

Phys Rev Lett. 2013 Oct 25;111(17):176405. doi: 10.1103/PhysRevLett.111.176405. Epub 2013 Oct 25.

Abstract

We report the electronic and transport properties of the triangular antiferromagnet PdCrO(2) at high magnetic fields up to 33 T, using measurements of the de Haas-van Alphen oscillations and the Hall resistivity. The de Haas-van Alphen oscillations below the magnetic ordering temperature T(N) reveal several two-dimensional Fermi surfaces of smaller size than those found in nonmagnetic PdCoO(2), consistent with the band structure calculations. This evidences Fermi surface reconstruction due to the 120° helical ordering of the localized Cr spins, suggesting significant coupling of the itinerant electrons to the underlying spin texture. This induces the nonlinear Hall resistivity at low temperatures via the magnetic breakdown in the reconstructed Fermi surface. Furthermore, such a coupling leads to the unconventional anomalous Hall effects near T(N) due to the field-induced spin chirality at high magnetic fields.