The present work assessed the impact of an external electron acceptor on phosphorus fluxes between water and sediment interface. Microcosm experiments simulating a sediment microbial fuel cell (SMFC) were carried out and phosphorus was extracted by an optimized combination of three methods. Despite the low voltage recorded, ~96 mV (SMFC with carbon paper anode) and ~146 mV (SMFC with stainless steel scourer anode), corresponding to a power density of 1.15 and 0.13 mW/m(2), it was enough to produce an increase in the amounts of metal bound phosphorus (14% vs 11%), Ca-bound phosphorus (26% vs 23%), and refractory phosphorus (33% vs 28%). These results indicate an important role of electroactive bacteria in the phosphorus cycling and open a new perspective for preventing metal bound phosphorus dissolution from sediments.
Keywords: Eutrophication; Lake sediments; Phosphorus; Sediment microbial fuel cell; Wastewater.
Copyright © 2013 Elsevier Ltd. All rights reserved.