The biosynthesis of oxytocin, vasopressin and their associated neurophysins were studied in the projection from the paraventricular nucleus of the hypothalamus to the spinal cord in individual freely-moving adult male rats. Neuropeptide biosynthesis was studied in vivo by the delivery of [35S]cysteine through stereotaxically implanted indwelling cannulae using an osmotic minipump delivery system. Following the appropriate chase times, the neural lobe and spinal cord segments T1-T4 and T12-L2 were removed from fresh tissue; in addition, the nucleus of the solitary tract was punched from frozen coronal sections. The radiolabeled peptides were purified from the tissue homogenates by sequential linear and exponential gradient elution from reverse-phase high performance liquid chromatography columns. This approach has allowed us to purify radiolabeled oxytocin and vasopressin from both the upper and lower spinal cord. However, the kinetics of oxytocin and vasopressin biosynthesis appeared to be remarkably different, as judged by their differential labeling with different pulse and chase times. Additionally, the use of different chase periods following the pulse of radiolabel has allowed us to determine that oxytocin reaches the spinal cord via the fast component of axonal transport (greater than 8 mm h-1). Using immunoprecipitation and purification by high performance liquid chromatography, we were also able to purify radiolabeled neurophysins from spinal cord tissue homogenates. These results lend further support to a role for oxytocin and vasopressin in the modulation of autonomic nervous system function and to the role of the paraventricular nucleus as an integration center for endocrine and autonomic function.